In order to obtain a B.Sc. in Computer Science, a student must complete a minimum of 140 credits of coursework. This includes 32 credits of Foundation Studies. The minimum requirement for the major is 93 credit hours including 6 credit hours of internship / senior project and Minor 15 credits.

<table>
<thead>
<tr>
<th>Foundation Courses</th>
<th>32 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>6</td>
</tr>
<tr>
<td>ENG 101 Listening and Speaking Skills</td>
<td>3</td>
</tr>
<tr>
<td>ENG 105 Business English</td>
<td>3</td>
</tr>
<tr>
<td>ENG 106 Advanced English Skills</td>
<td>3</td>
</tr>
<tr>
<td>Computer Skills</td>
<td>3</td>
</tr>
<tr>
<td>CSC 101 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>Numeracy</td>
<td>6</td>
</tr>
<tr>
<td>MAT 102 Linear Algebra & Coordinate Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MAT 212 Probability & Statistics for Sc. & Engr.</td>
<td>3</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>8</td>
</tr>
<tr>
<td>PHY 101 Physics-I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 101L Physics-I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 101 Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 101L Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHY 102 Physics-II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 102L Physics-II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>SOC 101 Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>HEA 101 Health and Society</td>
<td>3</td>
</tr>
<tr>
<td>ECN 200 Introduction to Economics</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>FRN 101 Elementary French</td>
<td>3</td>
</tr>
<tr>
<td>HST 103 History and Civilization</td>
<td>3</td>
</tr>
<tr>
<td>ACN 201 Principles of Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Live-in-Field Experience</td>
<td></td>
</tr>
<tr>
<td>LFE 201 Live-in-Field Experience</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Descriptions of Foundation Courses

ENG 101 Listening and Speaking Skills (3 credits)
Listening for main ideas and specific information, getting meaning from context, identifying stressed words and reductions, listening for advice, directions, understanding instructions, guessing meaning, inferring, predicting, listening to lectures and note taking, listening to narratives and amusing anecdotes. Speaking as social interaction, to obtain and give information, telephone conversations, introductions, greetings, partings, giving instructions, making complaints, apologies, giving directions, opinions and suggestions, expressing feelings and moods, attitudes and opinions. Classroom interaction, asking for clarification and giving explanations, descriptions, comparisons, analysis, and evaluations. Speeches, presentations, debates and discussions at seminars and conferences. Pronunciation with emphasis on intonation, stress patterns, paralinguistic, features.

ENG 105 Business English (3 credits)
The role of communication in business organization, a model of the communication process, perception and reality, the filter of the mind, some malfunctions of communication, principles of clear business writing, qualities of effective business correspondence, the direct approach letters, the indirect approach, persuasive requests and collection letters, sales letters, job applications and resume writing, office memorandums, the problems and organization of a report, determination of a report make-up, techniques of writing a report, visual aspects in a report, public speaking and oral communication.

ENG 106 Advanced English Skills (3 credits)
Advanced skills in reading - Critical reading and responding, analysis and evaluation of texts styles, comparing different purposes and registers, writing critiques of articles, text books and reviews, reading scientific and technical articles, journals and research papers. Writing in response to reading, notes, summaries, term papers, seminar and workshop presentations, collaborative writing on wider topics. Speeches and debates. Writing in narrative and expository modes. Writing research papers, abstracts, formulating thesis questions and statements, making bibliographic surveys, writing research questions for surveys and interviews, gathering and presentation of data, drawing conclusions, abbreviations and numbers, quotations, footnotes and references, bibliographies, tables, illustrations, editing and proofreading. Term paper mandatory.

CSC 101 Introduction to Computer Science (3 credits)

MAT 102 Linear Algebra & Coordinate Geometry (3 credits)
Linear algebra:
Coordinate Geometry:
Coordinate Geometry of 2-dimension-change of axis, Transformation of coordinates. Simplification of equations of curves, Coordinate geometry of 3-dimension system of coordinates, distance between two points, section formula, projection, direction cosines, equations of planes and lines.

MAT 212 Probability & Statistics for Sc. & Engr. (3 credits)
Discrete and continuous random variables; probability concepts; discrete and continuous distributions; Binominal, Poisson, Normal, Exponential distributions; moments and moment generating functions; joint probability distributions; sampling distributions; confidence intervals; least-square regression; hypothesis testing; analysis of variance; Markov process, Monte-Carlo simulation.

PHY 101 Physics - 1 (3 credits)
Waves and Oscillations: Simple harmonic motion, Differential equation of simple harmonic oscillator, total energy and average energy, combination of simple harmonic oscillation, spring mass system, torsion pendulum, two body oscillation, reduced mass, damped oscillation, forced oscillation, resonance, vibrations of membranes and columns, progressive and stationary wave, group and phase velocities, sound waves-Doppler effect, Sabine's formula, architectured acoustics.
Optics: Defects of images: Spherical aberration, astigmatism, coma, distortion, curvature, chromatic aberration, theories of light, Haygen’s principle; Interference of light: young’s double slit experiment, displacement of fringes and its uses, Fresnel bi-prism, interference in thin film, Newton’s rings, interferometers, Differentiation: Diffraction by single slit, Diffraction from a circular aperture, resolving power of optical instruments, diffraction at double slit and N-slits, diffraction grating, Polarization: production and analysis of polarized light, Brewster’s law, Malu’s law, polarization by double refraction, Nicol prism, optical activity, polarimeters, optics of crystal optical effect in crystal, laser, nonlinear optics.
Thermal Physics: Heat and work, Zeroth law of thermodynamics, thermometer, thermocouple, the first law of thermodynamics and its applications, Kinetic theory of
gases- kinetic interpretation of temperature, specific heats of ideal gases, equipartition of energy, mean free path, work done by gas, isothermal and adiabatic relations, vandarwaal’s equation of state, Maxwell’s distribution of molecular speeds, reversible and irreversible processes, Carnot’s cycle, second law thermodynamics, Carnot’s theorem, entropy, thermodynamics functions, Maxwell relations, Clausius and Clapeyron equation.

PHY 101L Lab work based on PHY1 (1 credit)

PHY 102 Physics II (3 credits)
Atomic Structure: Rutherford scattering, atomic structure (Bohr model, Thomson model, Rutherford model), Zeeman Effect.
Structure of Matter: Classification of solids, crystal structure of solids, Bragg’s law, Distinction between metal, insulator and semiconductor.
Modern Physics: Galilean relativity and Einstein’s special theory of relativity, Lorentz transformation equations, Length contraction, time dilation and mass-energy relation, photoelectric effect, Compton Effect, De’Broglie matter waves.
Nuclear Physics: Constituent of atomic nucleus, nuclear binding energy, different types of radioactivity, radioactive decay law, Nuclear reactions, nuclear fission, nuclear fusion.
Mechanics: Linear momentum of a particle, linear momentum of a system of particles, conservation of linear momentum, some applications of a system particles, Kepler’s law of planetary motion, the law of Universal Gravitation, the motion of planets and satellites.
Introductory Quantum Mechanics: Wave function, uncertainty principle, postulates, Schrodinger time independent equation, expectation value, probability, particle in a Zero potential, calculation of energy.

PHY102L Lab work based on PHY2 (1 credit)

CHEM 101 Chemistry (3 credits)

CHEM 101L Lab work based on CHEM1 (1 credit)

SOC 101 Introduction to Sociology (3 credits)
Introductory Sociology is designed to acquaint the beginning students with the major concepts and theories. With a brief discussion of its history and contributions of the
major sociologists the course introduces the students to the methodology of social research. The course then looks at the major concepts, like culture, groups, socialization, deviance and social control. The next section deals with social inequality in terms of social stratification, global inequality, and inequalities among ethnic groups, gender and of age. It then moves to the different institutions like, family, religion, education, economy, and government and politics. The next section deals with population, environment, urbanization and finally with collective behavior and social movements and social change.

HEA 101 Health and Society (3 credits)
This course aims to introduce students to an understanding of key sociological approaches to the analysis and understanding of health and society. The course covers concepts of health and disease, patterns of health and the social construction of disease. Special attention is given to develop knowledge on theories central to the notion of health, including the social, cultural and institutional forces and context that play a role on health and health related practices. The purpose is to help establish a perspective that will enable the students to better understand the relationship between health and society as well as to provide skills and knowledge for research experiences. The course also provides an overview of the basic concepts of population studies that will help students develop their own demographic perspective, enabling them to understand some of the most important issues confronting the world. The course will use a combination of methods, such as lectures, debates, preparation of assignments by reviewing journal articles and presentation.

ECN 200 Introduction to Economics (3 credits)

Credit creation by banking system. Monetary policy. Some concepts of international Trade, exchange rate determination and economic development.

HST 103 History & Civilization (3 credits)
Meaning, Growth and Spread of civilization The Ancient Near East: Mesopotamia- Egypt- The Hebrews- The Hittites Canaanites - Philistine - Phoenicians - Crete - Mycenae _ The Classical World the Greeks and the Romans - The Medieval Age: Christianity, Barbarian invasions, Feudalism, Manorial System, Growth of towns and Universities - Byzantine civilization and the formation of Russia - Early Culture in America: The Mayas, the Aztecs, the Incas - The Renaissance and the Reformation -
Government and Societies in the Age of Absolutism - The Age of Explorations – The formation of Latin American - the Scientific and Industrial Revolutions – Consolidation of Europe's Global dominance - World War I - The Bolshevik Revolution in Russia.

FRN 101 Elementary French I (3 credits)

ACN 201 Principles of Accounting (3 credits)

Live-in-Field Experience
LFE 201: Live-in-Field Experience (3 credits)

The course is intended to expose CIU students to experience life in the cross-cultural situation obtained in the country, and to the practice of the field survey method. It is usually offered during the semester break in the winter.
<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR 201 Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>CCR 203 Data Structure</td>
<td>3</td>
</tr>
<tr>
<td>CCR 203L Lab work based on CCR203</td>
<td>1</td>
</tr>
<tr>
<td>CCR 204 Computer Hardware & Digital Logic</td>
<td>3</td>
</tr>
<tr>
<td>CCR 204L Computer Hardware & Digital Logic Lab</td>
<td>1</td>
</tr>
<tr>
<td>CCR 205 Structured Programming Language</td>
<td>3</td>
</tr>
<tr>
<td>CCR 205L Lab work based on CCC 205</td>
<td>1</td>
</tr>
<tr>
<td>CCR 212 Microprocessor & Assembly Language</td>
<td>3</td>
</tr>
<tr>
<td>CCR 212L Lab work based on CCR 212</td>
<td>1</td>
</tr>
<tr>
<td>CCR 250 Numerical Methods for Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CCR 250L Lab work based on CCR 250</td>
<td>1</td>
</tr>
<tr>
<td>CCR 305 Object Oriented Programming -I</td>
<td>3</td>
</tr>
<tr>
<td>CCR 305L Object Oriented Programming Lab</td>
<td>1</td>
</tr>
<tr>
<td>CCR 306 Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CCR 306L Lab work based on CCR 306</td>
<td>1</td>
</tr>
<tr>
<td>CCR 311 Computer Organization & Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CCR 413 Operating System</td>
<td>3</td>
</tr>
<tr>
<td>CCR 435 Computer Graphics</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 210 Electronics Devices & Circuits</td>
<td>3</td>
</tr>
<tr>
<td>CSC 210L Lab work based on CSC 210</td>
<td>1</td>
</tr>
<tr>
<td>CSC 301 Finite Automata and Computability</td>
<td>3</td>
</tr>
<tr>
<td>CSC 401 Database Management</td>
<td>3</td>
</tr>
<tr>
<td>CSC 401L Database Management Lab</td>
<td>1</td>
</tr>
<tr>
<td>CSC 405 MIS and Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CSC 405L Lab work based on CSC 405</td>
<td>1</td>
</tr>
<tr>
<td>CSC 411 Compiler Construction</td>
<td>3</td>
</tr>
<tr>
<td>CSC 415 Object Oriented Programming-II</td>
<td>3</td>
</tr>
<tr>
<td>CSC 415L Lab work based on CSC415</td>
<td>1</td>
</tr>
<tr>
<td>CSC 430 Data Communication and Networking</td>
<td>3</td>
</tr>
<tr>
<td>CSC 430L Data Communication and Networking Lab</td>
<td>1</td>
</tr>
<tr>
<td>CSC 445 Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSC 455 Web Application & Internet</td>
<td>3</td>
</tr>
<tr>
<td>CSC 465 E-Commerce and Web Database</td>
<td>3</td>
</tr>
<tr>
<td>CSC 466 Cyber and Intellectual Property Laws</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Description of Major in Computer Science

Core Courses 40 credits

CCR 203 Data Structures (3 credits): Elementary data objects; elementary data structures, internal data representation, abstract data types, recursive data structures, arrays, lists, stacks, queues, graphs, trees.

CCR 203L Lab work based on CCR 203 (1 credit)

CCR 204 Computer Hardware and Digital Logic (3 credits): Introduction:

Number System Code:
Decimal Binary, Hexadecimal, Octal’s complement, 2’s complement, addition and subtraction, weighted binary codes, Error detecting codes, Error correcting codes, Alphanumeric codes.

Counters and Shift Register:
Ripple Counters, Design of Method-N ripple counter, Up-Down counter, design of synchronous counters with-and without lockout conditions, design of shift registers with shift-left, shift-right & parallel load, facilities, universal shift registers.

Data Converters:
Sample & Hold switch, D/A converters: Weighted type, R-2r ladder type; A/D Converters; Counter-Ramp’ type. Dual Slope Type, Successive approximation type, flash type; Specifications of ADC & ,DAC.

Digital Logic Families:
Characteristics of digital circuits: Fan in, fan out, power dissipation, propagation delay, noise margin, Transistor-transistor Logic (TTL), TIL, NAND Gate with active Pull Up, its input and output Characteristics, Types of TTL Gates (Schottky, standard, low power, high speed). Emitter Coupled Logic (ECL), ECL gate, its transfer characteristics, level translation in ECL & TTL, MOS Gates, MOS inverter, CMOS Inverter, Rise & Fait time of MOS & CMOS gates, interfacing TIL & CMOS Circuits, Comparison of Characteristics of TTL, ECL, MOS & CMOS logic circuits, Tristate Logic & its applications.

Semiconductor Memories & Programmable Logic:
RQM, PROM, EPROM, EEPROM, RAM, Static RAM, Typical Memory Celt, Memory Organization, Dynamic RAM cell, Reading Writing Operation in RAM, PLA, PAL” FPGA

CCR 204L Lab work based on CCR 204 (1 credit)

CCR 205 Structured Programming Language (3 credits):
Introduction: Programming languages, basic concepts of compiler, interpreter, algorithm and flowchart.
Simple C: Program structure in C, program creating, debugging and running, basic I/O functions, identifiers and keywords, primitive data types, variables, constants, operators, bitwise operators, comments, decision making statements with if and switch case; looping structures with for, while, do-while, goto;
Compound Data Types: Array, structures, union, pointers, strings, dynamic allocation, static, global, external and register, user defined data types
Functions: C functions and user defined functions, function types, function and pointers, parameters, prototypes, recursive function.
Others: Pre-processors with define, include, macro, ifdef, uses of graphics functions and project management with user-defined header files.

CCR 205L Lab work based on CCR 203 and CCR 205 (1 credit)

CCR 212 Microprocessor and Assembly Language (3 credits): Organization of a computer; introduction to 80X86 family of microprocessors; jump instruction; address and instructions, assembling, linking and running programs; debugging programs; controlling program development; addressing models; instructions encoding and assemblers; I/O programming; interrupts, interrupt controllers, device drivers. Overview of Pentium processors. Assembly language fundamentals: symbolic constants, arithmetic instructions, jump and looping, conditional jumps, macro techniques, stack and subroutines, Conditional Call and Return. Interrupt, Interfacing Data Converters, Interrupt Controller, Direct Memory Access (DMA).

CCR 212L Lab work based on CCR 212 (1 credit)
CCR 250 Numerical Methods for Engineering (3 credits)

Introduction:
Motivation and errors in numerical techniques, Taylor series.

Finite Difference Calculus:
Forward, backward, divided, and central difference and difference of polynomial.

Interpolation and Extrapolation:
Iteration, bisection, false position. Raphson, Secant and Muller’s methods.

Simultaneous Linear Algebra Equations:
Cramer’s rule, Inversion of matrices, Gauss elimination, Gauss-Jordon method, factorization and Gauss-Siedel iteration methods.

Curve fitting:
Linear and polynomial regression, fitting power, exponential and trigonometric functions, ordinary differential equations, initial value problem, Taylor’s series method, Picard’s methods of successive approximation, Euler’s method and RungeKutta method, Boundary value problems.

Numerical Integration:
General quadratic formula, trapezoidal rule and Simpson’s rule, numerical differentiation.

CCR 250L Numerical Methods for Engineering Lab: (1 credit)
Laboratory experiments based on theory and concepts learnt in CCR 250

CCR 305 Object-Oriented Programming I (3 credits): Objects and classes; class specifiers and definition of objects; constructors and destructor. Abstract Data Structures, Friend functions; function and operator overloading; inheritance, reusability, virtual functions polymorphism; exception handling. Object oriented Programming Languages C++, Java.

CCR 305L Lab work based on CCR 305 (1 credit)

CCR 306 Algorithms (3 credits):

Introduction:

Divide and Conquer:
Performance analysis of Binary Search, Merge sort, Quick sort, Selection sort.

Greedy Algorithms:

Dynamic Programming:
Elements of Dynamic programming, Assembly-line scheduling problem, Matrix-chain multiplication, Multistage Graph, All pairs Shortest paths, Longest common subsequence, 0/1 Knap Sack.

Back Tracking:
General method, 8 queen’s problem, Graph coloring, 0/1 Knap Sack Problem.

NP-Completeness:
Polynomial Time, polynomial-time verification, NP-completeness & reducibility, NP-complete problems.

CSC 306L Lab work for CSC 306 (1 credit)

CCR 311 Computer Organization and Architecture (3 credits): Computer system: computer structures, components, functions, memory, I/O devices, modules, programmed and interrupt driven I/I, I/O channels and processors, interfaces, central processing unit: arithmetic/logic unit, instruction-sets, addressing modes, CPU, processor and register organizations, control units and parallel organizations, interrupts, interrupt controllers, device drivers.

CCR 435 Computer Graphics (3 credits): Graphics devices; graphics coordinate systems; programming tools for graphics; lines and curves; turtle graphics; elementary clipping: Cohen–Sutherland algorithm; generating curves in two dimension; elementary ray-tracing; drawing objects in two dimension; transformation of pictures; affine transformation; elementary three-dimensional object modeling; orthographic and perspective projections.

Concentration 38 credits

CSC 210 Electronic Devices and Circuits (3 credits): Semiconductors: Junction diode characteristics; Operation and small signal models of diodes; Circuit application of diodes. Bipolar transistor: Characteristics; BJT biasing and thermal stabilization; CE, CB, CC configurations; Small signal low frequency h-parameter models and hybrid-p model. Amplifiers: voltage and current amplifiers; Operational amplifiers; Off-set null adjustments; Differential input and output impedance, frequency response and noise. Oscillators: Hartley, Colpitts & Wine-Bridge oscillators. Introduction to JFET, MOSFET, PMOS, NMOS and CMOS: Biasing and application in switching circuits. Silicon controlled rectifier (SCR), TRIAC, DIAC, UJT: Characteristics and application. Introduction to rectifiers, active filters, regulated power supply. Introduction to IC fabrication techniques.
CSC 210L Lab work based on CSC 210 (1 credit)

CSC 301L Lab work based on CSC 301 (1 credit)

CSC 405L Lab work based on CEN 405 (1 credit)

CSC 411 Compiler Construction (3 credits): Fundamental of compilers and interpreters for ALGOL derivative languages; scanning theory and practices; grammar and parsing; semantic processing; symbol tables; run-time storage organization; processing declaration; processing expression and data structures; translating procedures and functions; attribute grammar and multi-pass translation; lexical analysis; syntax analysis; semantic analysis. Code generation and local optimization; global optimization.

CSC 411L Lab work based on CSC 411 (1 credit)

CSC 415 Object-oriented Programming II (3 credits): Polymorphism and Virtual Functions, standard library templates, Object oriented programming and Windows architecture, API, Multithreaded Programming, Foundation Class Library and Wizards, GUI Programming tools. Applications of OOP in database designing, networking and multimedia.

CSC 415L Lab work based on CSC 415 (1 credit)
CSC 430 Data Communication and Networking (3 Credits): Basic concepts, categories of networks, network topologies, OSI model and TCP/IP protocol suite, spectrum and bandwidth, encoding, modulations, interfaces and modems, transmission media, fiber optic and wireless media, multiplexing, error detection techniques, data link control protocols, LAN types and technology, MAC protocols, high speed LANs and Gigabit Ethernet, Wireless LANs, MAN, Circuit switching and Packet switching, ISDN, Frame Relay and ATM, SONET/SDH, Internetworking devices, repeaters, bridges and routers, routing algorithms, transport layer protocols, IP addressing, sub netting, domain name systems, TCP/IP applications, FTP, SMTP, HTTP and World Wide Web.

CSC 430L Lab work for CSC 430 (1 credit)

CSC 445 Software Engineering (3 credits): Introduction to the principles of software engineering. Software as product and process. Project management and planning; tracking and scheduling; risk analysis and quality assurance techniques.; configuration management. Project and process metrics, size and function oriented metrics. Software testing techniques: black box and white box techniques. Testing strategy: unit, integration and system testing.. Concepts of object-oriented, event-driven and network programming, client-server architecture, web engineering.. The course focuses on taking a group development project from beginning to end.

CSC 466 Cyber and Intellectual Property Laws (3 credits)

Basics of Computer & Internet Technology
Internet, ISP & domain name, Network Security; Encryption techniques and Algorithms; Digital Signatures.
Introduction to Cyber World
Introduction to Cyberspace and Cyber Law, Different Components of cyber Laws, Cyber Law and Netizens.

E-Commerce
Introduction to E-Commerce, Different E-Commerce Models, E-Commerce Trends and Prospects; E-Commerce and Taxation, Legal Aspects of E-Commerce.

Intellectual Property Rights
IPR Regime in the Digital Society, Copyright and Patents, International Treaties and Conventions, Business Software Patents, Domain Name Disputes and Resolution.

IT Act, 2000
Aims and objectives, Overview of the Act, Jurisdiction, Role of certifying Authority, Regulators under IT Act, Cyber Crimes-Offences and Contraventions Grey Areas of IT Act.

Optional Courses (any three) **9 credits**

ECR 101 Introduction to Electrical Engineering (3 credits)
- **Methods of Analysis**: Branch-Current Analysis, Node & Mesh Analysis, Bridge Networks, Y-Δ transformation.
- **Network Theorems**: Superposition, Thevenin’s, Norton’s, Maximum Power Transfer Theorem & Reciprocity Theorem.
- **Energy Storage Elements**: Inductors & Capacitors & Their Characteristics, Series-Parallel Combination of Inductors & Capacitors.
- **Responses of RL & RC Circuits**: Natural & Step Responses.
- **Magnetic Quantities & Variables**: Flux Permeability & Reluctance, Magnetic Field Strength, Magnetic Potential, Flux Density Magnetization Curve.
- **Laws in Magnetic Circuits**: Ohm’s Law, Ampere’s Circuit Law, Series & Parallel Magnetic Circuits.

CSC 425 Artificial Intelligence (3 credits): Principal ideas and development of artificial intelligence; theorem proving; problem solving methods; search space; generation pruning and searching; knowledge representation techniques; heuristic search; puzzle solvers; expert system and data processing; simulative and cognitive process; natural language analysis and synthesis; representation design and design knowledge;

CSC 440 Computer Simulation and Modeling (3 credits): Statistical background for simulation; system reliability; mathematical description of general dynamic systems; discrete event; discrete time and continuous time; queuing models; effects of queue disciplines; factors
affecting queue systems; implementation and management of models; performance evaluation of models; simulation languages; SLAM.

CSC 450 Computer & Network Security (3 Credits): Introduction; nature and types of security attacks, model for network security, Fiestel cipher structure; conventional encryption algorithms, DES and triple DES, public key cryptography, message authentication, hash function, RSA and Diffie-Hellman algorithms, digital signature, digital certificate, key distribution, system security, intrusion and password protection, intrusion detection system, viruses, worms and anti-virus techniques, firewall architecture and design, trusted system, network security, Kerberos, X.50g, e-mail security, PGP and S/MIME, IP Security architecture, secure socket layer, secure electronic transaction, network management security and SNMP, JAVA security, CGI security, security features of windows NT, UNIX and LINUX.

CSC 460 Multimedia Systems (3 credits): Multimedia system architecture, Text, images and graphics, audio, video and animation. Data compression, JPEG and MPEG, DVI, AVI, multimedia files standards; overview of multimedia storage and retrieval technologies. Video and Image display systems, multimedia communication and database systems, multimedia user interfaces, and applications of multimedia systems.

CSC 470 Introduction to Parallel Programming (3 credits): Parallel architectures; linear, mesh, binary, and hypercube connections; routing mechanisms; communication models; scalability; parallel algorithms; searching, sorting, matrix algorithms; parallel programming; message passing paradigm; shared memory paradigm.

CSC 480 Computer Vision (3 credits): Introduction, 2D image, 3D vision, stereo vision; edge detection, image segmentation, boundary features, shape features, spatial moments, texture analysis, and mathematical morphology; Marr's paradigm, active vision; 3D vision, Marr's paradigm, active and purposive vision; applications, autonomous vehicles, augmented reality environments, CAD modeling, games and movies; rigid body transformations, calibration problems, correspondence and flow, epipolar geometry, structure from stereo, and structure from motion.

CSC 490 Special Topic in Computer Science (3 credits): Selected advanced topic from the field of computer science and its applications. It may vary from time to time.
Minor in Engineering Mathematics

Students majoring in Electrical & Electronics Engineering must take engineering mathematics as their minor. Students taking this minor will be adequately trained in mathematics to understand its application in fields of Electrical and Electronics Engineering.

<table>
<thead>
<tr>
<th>Compulsory Courses</th>
<th>12 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 201 Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MAT 251 Complex Variables & Vector Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MAT 303 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MAT 305 Boundary Value Problems</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Courses – Anyone from the following</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 403 Introduction to Mathematical Modeling</td>
<td>3</td>
</tr>
<tr>
<td>MAT 405 Optimization Techniques</td>
<td>3</td>
</tr>
</tbody>
</table>

Description of Minor in Engineering Mathematics

MAT 201 Calculus (3 credits)
(Differential Calculus & Integral Calculus)

Differential Calculus:
Limits, continuity and differentiability. Successive differentiation of various types of functions, Leibnitz’s theorem, Rolle’s Theorem, Mean value theorem, Taylor’s and Maclaurin’s theorems in finite and infinite forms, Lagrange’s form of reminders, Cauchy’s form of reminders, Expansion of functions, evaluations of indeterminate forms of L’Hospital’s rule, Partial differentiation, Euler’s theorem, Tangent and normal, Subtangent and subnormal in Cartesian and polar co-ordinates, Determination of maximum and minimum values of functions, Curvature, Asymptotes, curve, tracing.

Integral Calculus:
Definition, integration by the method of substitution, integration by parts, Standard Integrals. Integration by successive reduction. Definite Integrals, its properties and use in summing series. Walli’s formulae. Improper integrals. Beta function and Gamma function, Area under a plane, curve and area of a region enclosed by two curves in Cartesian and polar co-ordinates, Trapezoidal and Simpson’s rule, Volumes and surface areas of solids of revolution.

MAT 251 Complex Variables and Vector Analysis (3 credits)
Complex Variables:

Vector Analysis:

MAT 303 Differential Equations (3 credits)

Ordinary differential equations:
Degree and order of ordinary differential equations, formation of differential equations by various method, solution of first order differential equations. Solution of general linear equations of second and higher order with constant coefficients, applications. Solution of homogeneous linear equation of the higher order when the dependent or independent variables are absent. Solution of differential equations by the method based on the factorization of the operators. Frobenious method. Legendre and Bessel’s function.

Partial Differential Equations:

MAT 305 Boundary Value Problems (3 credits): Bessel’s functions; Legendre polynomials; Fourier series; half wave and full wave expansions; solutions of Laplace equation, Poisson's equation, wave equation and diffusion equation in orthogonal and non-orthogonal coordinate systems; Sturm-Liouville problem. Fourier and Laplace Transform in details.

MAT 403 Introduction to Mathematical Modeling (3 credits): An introduction to techniques of mathematical modeling involved in the analysis of meaningful and practical problems in many disciplines including mathematical sciences, operations research, engineering and the management and life sciences. Students will be encouraged to recognize and formulate problems in mathematical terms, solve the resulting mathematical problems and interpret the solution in real terms.

MAT 405 Optimization Techniques (3 credits): Discrete, deterministic models of interest to social sciences. Linear programming, duality, simplex method, sensitivity analysis, convex sets. Selections from assignment, transportation, network flow, nonlinear programming problems.